Abstract
Entity matching refers to the task of determining whether two different representations refer to the same real-world entity. It continues to be a prevalent problem for many organizations where data resides in different sources and duplicates the need to be identified and managed. The term “entity matching” also loosely refers to the broader problem of determining whether two heterogeneous representations ofdifferent entitiesshould be associated together. This problem has an even wider scope of applications, from determining the subsidiaries of companies to matching jobs to job seekers, which has impactful consequences.In this article, we first report our recent system DITTO, which is an example of a modern entity matching system based on pretrained language models. Then we summarize recent solutions in applying deep learning and pre-trained language models for solving the entity matching task. Finally, we discuss research directions beyond entity matching, including the promise of synergistically integrating blocking and entity matching steps together, the need to examine methods to alleviate steep training data requirements that are typical of deep learning or pre-trained language models, and the importance of generalizing entity matching solutions to handle the broader entity matching problem, which leads to an even more pressing need to explain matching outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.