Abstract

Nowadays, academic research, disaster mitigation, industry, and transportation apply the cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that works together to solve problems or maximise utility. The essential marks of formation control are how the multiple agents can reach the desired point while maintaining their position in the formation based on the dynamic conditions and environment. A cooperative multi-agent system closely relates to the formation change issue. It is necessary to change the arrangement of multiple agents according to the environmental conditions, such as when avoiding obstacles, applying different sizes and shapes of tracks, and moving different sizes and shapes of transport objects. Reinforcement learning is a good method to apply in a formation change environment. On the other hand, the complex formation control process requires a long learning time. This paper proposed using the Deep Dyna-Q algorithm to speed up the learning process while improving the formation achievement rate by tuning the parameters of the Deep Dyna-Q algorithm. Even though the Deep Dyna-Q algorithm has been used in many applications, it has not been applied in an actual experiment. The contribution of this paper is the application of the Deep Dyna-Q algorithm in formation control in both simulations and actual experiments. This study successfully implements the proposed method and investigates formation control in simulations and actual experiments. In the actual experiments, the Nexus robot with a robot operating system (ROS) was used. To confirm the communication between the PC and robots, camera processing, and motor controller, the velocities from the simulation were directly given to the robots. The simulations could give the same goal points as the actual experiments, so the simulation results approach the actual experimental results. The discount rate and learning rate values affected the formation change achievement rate, collision number among agents, and collisions between agents and transport objects. For learning rate comparison, DDQ (0.01) consistently outperformed DQN. DQN obtained the maximum −170 reward in about 130,000 episodes, while DDQ (0.01) could achieve this value in 58,000 episodes and achieved a maximum −160 reward. The application of an MEC (model error compensator) in the actual experiment successfully reduced the error movement of the robots so that the robots could produce the formation change appropriately.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call