Abstract
Many neotropical species have a complex history of diversification as a result of the influence of geographical, ecological, climatic, and geological factors that determine the distribution of populations within a lineage. Phylogeography identifies such populations, determines their geographic distributions, and quantifies the degree of genetic divergence. In this work we explored the genetic structure of Habia rubica populations, a polytypic taxon with 17 subspecies described, in order to obtain hypotheses about their evolutionary history and processes of diversification. We undertook multilocus analyses using sequences of five molecular markers (ND2, ACOI-I9, MUSK, FGB-I5 and ODC), and sampling from across the species’ distribution range, an area encompassing from Central Mexico throughout much of South America. With these data, we obtained a robust phylogenetic hypothesis, a species delimitation analysis, and estimates of divergence times for these lineages. The phylogenetic hypothesis of concatenated molecular markers shows that H. rubica can be divided in three main clades: the first includes Mexican Pacific coast populations, the second is formed by population from east of Mexico to Panama and the third comprises the South American populations. Within these clades we recognize seven principal phylogroups whose limits have a clear correspondence with important geographical discontinuities including the Isthmus of Tehuantepec in southern Mexico, the Talamanca Cordillera, and the Isthmus of Panama in North America. In South America, we observed a marked separation of two phylogroups that include the populations that inhabit mesic forests in western and central South America (Amazon Forest) and those inhabiting the seasonal forest from the eastern and northern regions of the South America (Atlantic Forest). These areas are separated by an intervening dry vegetation “diagonal” (Chaco, Cerrado and Caatinga). The geographic and genetic structure of these phylogroups describes a history of diversification more active and complex in the northern distribution of this species, producing at least seven well-supported lineages that could be considered species.
Highlights
The origins and evolutionary drivers of neotropical diversity are one of the most studied and hotly debated topics since the first biological explorations in the 19th century (Salvin & Godman, 1879–1904)
The objective of this paper is to evaluate the nature and geographic structuring of genetic variation within and among populations of H. rubica, using both nuclear and mitochondrial genetic markers in order to provide a phylogenetic hypothesis about the evolutionary history of the species
The phylogenies obtained with mitochondrial and multilocus dataset revealed wellsupported topologies, independently of the method employed. Both topologies are composed of three main clades with seven and eight subclades for the multilocus and mitochondrial datasets, respectively
Summary
The origins and evolutionary drivers of neotropical diversity are one of the most studied and hotly debated topics since the first biological explorations in the 19th century (Salvin & Godman, 1879–1904). The paleogeographic changes that occurred throughout the Cenozoic (i.e., the last ∼66 Mya), like the Andean orogeny and the uprising of the Isthmus of Panama (Hewitt, 2000; Willis & Niklas, 2004; Nores, 2004), have been postulated as major factors driving diversification, as new geographical barriers both increased isolation and promoted divergence. Differentiation patterns across taxa are highly discordant and frequently cannot be linked to specific landscape or vicariant events (Burns & Naoki, 2004; Burns & Racicot, 2009; Mauck & Burns, 2009) as this hypothesis proposes; instead, they seem more related to each species ability to persist through environmental changes and independently disperse across putative geographic barriers (e.g., Smith et al, 2014)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have