Abstract
ABSTRACTThe menisci within the knee are essential for various anatomical functions, including load‐bearing, joint stability, cartilage protection, shock absorption, and lubrication. Magnetic resonance imaging (MRI) provides highly detailed images of internal organs and soft tissues, which are indispensable for physicians and radiologists assessing the meniscus. Given the multitude of images in each MRI sequence and diverse MRI data, the segmentation of the meniscus presents considerable challenges through image processing methods. The region‐specific characteristics of the meniscus can vary from one image to another within the sequence. Consequently, achieving automatic and accurate segmentation of meniscus in knee MRI images is a crucial step in meniscus analysis. This paper introduces the “UNet with depthwise residual network” (DR‐UNet), a depthwise convolutional neural network, designed specifically for meniscus segmentation in MRI images. The proposed architecture significantly improves the accuracy of meniscus segmentation compared to different segmentation networks. The training and testing phases utilized fat suppression turbo‐spin‐echo (FS TSE) MRI sequences collected from 100 distinct knee joints using a Siemens 3 Tesla MRI machine. Additionally, we employed data augmentation techniques to expand the dataset strategically, addressing the challenge of a substantial training dataset requirement. The DR‐UNet model demonstrated impressive meniscus segmentation performance, achieving a Dice similarity coefficient range of 0.743–0.9646 and a Jaccard index range of 0.653–0.869, thereby showcasing its advanced segmentation capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International Journal of Imaging Systems and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.