Abstract

LBNL is developing an innovative data acquisition module for superconductive magnets where the front-end electronics and digitizer resides inside the cryostat. This electronic package allows conventional electronic technologies such as enhanced metal–oxide–semiconductor to work inside cryostats at temperatures as low as 4.2 K. This is achieved by careful management of heat inside the module that keeps the electronic envelop at approximately 85 K. This approach avoids all the difficulties that arise from changes in carrier mobility that occur in semiconductors at deep cryogenic temperatures.There are several advantages in utilizing this system. A significant reduction in electrical noise from signals captured inside the cryostat occurs due to the low temperature that the electronics is immersed in, reducing the thermal noise. The shorter distance that signals are transmitted before digitalization reduces pickup and cross-talk between channels. This improved performance in signal-to-noise rate by itself is a significant advantage. Another important advantage is the simplification of the feedthrough interface on the cryostat head. Data coming out of the cryostat is digital and serial, dramatically reducing the number of lines going through the cryostat feedthrough interface. It is important to notice that all lines coming out of the cryostat are digital and low voltage, reducing the possibility of electric breakdown inside the cryostat.This paper will explain in details the architecture and inner workings of this data acquisition system. It will also provide the performance of the analog to digital converter when the system is immersed in liquid helium, and in liquid nitrogen. Parameters such as power dissipation, integral non-linearity, effective number of bits, signal-to-noise and distortion, will be presented for both temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.