Abstract
Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image classification and related tasks. However, the fully-connected layers in CNN are not robust enough to serve as a classifier to discriminate deep convolutional features, due to the local minima problem of back-propagation. Kernel Extreme Learning Machines (KELMs), known as an outstanding classifier, can not only converge extremely fast but also ensure an outstanding generalization performance. In this paper, we propose a novel image classification framework, in which CNN and KELM are well integrated. In our work, Densely connected network (DenseNet) is employed as the feature extractor, while a radial basis function kernel ELM instead of linear fully connected layer is adopted as a classifier to discriminate categories of extracted features to promote the image classification performance. Experiments conducted on four publicly available datasets demonstrate the promising performance of the proposed framework against the state-of-the-art methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have