Abstract

SummaryWe show that deep convolutional neural networks (CNNs) can massively outperform traditional densely connected neural networks (NNs) (both deep or shallow) in predicting eigenvalue problems in mechanics. In this sense, we strike out in a new direction in mechanics computations with strongly predictive NNs whose success depends not only on architectures being deep but also being fundamentally different from the widely used to date. We consider a model problem: predicting the eigenvalues of one‐dimensional (1D) and two‐dimensional (2D) phononic crystals. For the 1D case, the optimal CNN architecture reaches 98% accuracy level on unseen data when trained with just 20 000 samples, compared to 85% accuracy even with 100 000 samples for the typical network of choice in mechanics research. We show that, with relatively high data efficiency, CNNs have the capability to generalize well and automatically learn deep symmetry operations, easily extending to higher dimensions and our 2D case. Most importantly, we show how CNNs can naturally represent mechanical material tensors, with its convolution kernels serving as local receptive fields, which is a natural representation of mechanical response. Strategies proposed are applicable to other mechanics' problems and may, in the future, be used to sidestep cumbersome algorithms with purely data‐driven approaches based upon modern deep architectures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.