Abstract

The recent advancements in generative adversarial networks have showcased their remarkable ability to create images that are indistinguishable from real ones. This has prompted both the academic and industrial communities to tackle the challenge of distinguishing fake images from genuine ones. We introduce a method to assess whether images generated by generative adversarial networks, using a dataset of real-world Android malware applications, can be distinguished from actual images. Our experiments involved two types of deep convolutional generative adversarial networks, and utilize images derived from both static analysis (which does not require running the application) and dynamic analysis (which does require running the application). After generating the images, we trained several supervised machine learning models to determine if these classifiers can differentiate between real and generated malicious applications. Our results indicate that, despite being visually indistinguishable to the human eye, the generated images were correctly identified by a classifier with an F-measure of approximately 0.8. While most generated images were accurately recognized as fake, some were not, leading them to be considered as images produced by real applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.