Abstract
Transmembrane proteins play important roles incellular energy production, signal transmission, and metabolism. Many shallow machine learning methods have been applied to transmembrane topology prediction, but the performance was limited by the large size of membrane proteins and the complex biological evolution information behind the sequence. In this paper, we proposed a novel deep approach based on conditional random fields named as dCRF-TM for predicting the topology of transmembrane proteins. Conditional random fields take into account more complicated interrelation between residue labels in full-length sequence than HMM and SVM-based methods. Three widely-used datasets were employed in the benchmark. DCRF-TM had the accuracy 95 percent over helix location prediction and the accuracy 78 percent over helix number prediction. DCRF-TM demonstrated a more robust performance on large size proteins (>350 residues) against 11 state-of-the-art predictors. Further dCRF-TM was applied to ab initio modeling three-dimensional structures of seven-transmembrane receptors, also known as G protein-coupled receptors. The predictions on 24 solved G protein-coupled receptors and unsolved vasopressin V2 receptor illustrated that dCRF-TM helped abGPCR-I-TASSER to improve TM-score 34.3 percent rather than using the random transmembrane definition. Two out of five predicted models caught the experimental verified disulfide bonds in vasopressin V2 receptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.