Abstract

Transmembrane proteins play an important role in cellular energy production, signal transmission, metabolism. Existing machine learning methods are difficult to model the global correlation of the membrane protein sequence, and they also can not improve the quality of the model from sophisticated sequence features. To address these problems, in this paper we proposed a novel method by a feedback conditional random fields (FCRF) to predict helix boundaries of α-helix transmembrane protein. A feedback mechanism was introduced into multi-level conditional random fields. The results of lower level model were used to calculate new feedback features to enhance the ability of basic conditional random fields. One wide-used dataset DB1 was used to validate the performance of the method. The method achieved 95 % on helix location accuracy. Compared with the other predictors, FCRF ranks first on the accuracy of helix location.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.