Abstract

We report a successful bilateral globus pallidus internus-deep brain stimulation (GPi-DBS) for a Parkinson disease (PD) patient with idiopathic normal pressure hydrocephalus (INPH) and an unusually long anterior commissure-posterior commissure (AC-PC) line. A 54-year-old man presented with a history of 3 months of severe shuffling gait, rigidity, slow movements of the left side limbs, and difficulty managing finances. A brain MRI revealed marked ventriculomegaly (Evans index = 0.42). The patient was diagnosed with INPH and a ventriculoperitoneal shunt was placed. Cognitive impairment improved, but walking disturbances, slowness, and rigidity persisted. Then treatment with levodopa was added, and the patient experienced a sustained improvement. He was diagnosed with PD. After 7 years, the patient developed gait freezing and severe levodopa-induced dyskinesia. The patient underwent bilateral GPi-DBS. We used MRI/CT fusion techniques for anatomical indirect targeting. Indirect targeting is based on standardized stereotactic atlas and on a formula—derived method based on AC-PC landmarks. The AC-PC line was 40 mm (the usual length is between 19 and 32 mm). Intraoperative microelectrode recording was a non-expendable test, but multiple recordings were avoided to reduce the surgical risk of ventricular involvement. There was a 71% decrease in the UPDRS III score during the on-stimulation state (28 to 8). The patient's dyskinesias resolved dramatically with a UdysRS of 15 (88% improvement) during the on-stimulation condition. The observed motor benefits and the improvement of his daily activities have persisted 6 months after surgery. Deep brain stimulation surgery in PD with ventriculomegaly is a challenge. This procedure can result in a greater chance of breaching the ventricle, with risks of intraventricular hemorrhage and migration of cerebrospinal fluid into the brain parenchyma with target displacement. Furthermore, clinical judgment is paramount when recent onset of shuffling gait coexists with ventriculomegaly because the most common dilemma is differentiating between PD and INPH. For these reasons, neurologists and surgeons may refuse to operate on PD patients with ventriculomegaly. However, DBS should be considered for PD patients with motor complications when responsiveness to levodopa is demonstrated, even in the context of marked ventriculomegaly.

Highlights

  • Deep brain stimulation (DBS) surgery in Parkinson’s disease (PD) with ventriculomegaly is a challenge

  • The subject gave written informed consent for the publication of this case report and video files in accordance with the Declaration of Helsinki. This is the first report on DBS in a Parkinson disease (PD) patient with idiopathic normal pressure hydrocephalus (INPH)

  • We decided to operate on this patient, as DBS was considered the only option to improve his quality of life, ventriculomegaly that is sufficient to preclude direct electrode passage to the surgical target may be a contraindication to DBS

Read more

Summary

BACKGROUND

Deep brain stimulation (DBS) surgery in Parkinson’s disease (PD) with ventriculomegaly is a challenge. This procedure can result in a greater chance of breaching the ventricle, with risks of intraventricular hemorrhage and migration of cerebrospinal fluid into the brain parenchyma around the leads with subsequent target displacement. Clinical judgment is paramount when recent onset of shuffling gait coexists with ventriculomegaly because the most common dilemma is differentiating between PD and idiopathic normal pressure hydrocephalus (INPH) [1, 2]. We report a successful bilateral globus pallidus internus-deep brain stimulation (GPi-DBS) for a PD patient with INPH with marked ventriculomegaly and an unusually long anterior and posterior commissure (AC-PC) line.

Findings
DISCUSSION
CONCLUDING REMARKS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.