Abstract
One of the critical aspects of structure-based drug design is to choose important druggable binding sites in the protein's crystallography structures. As experimental processes are costly and time-consuming, computational drug design using machine learning algorithms is recommended. Over recent years, deep learning methods have been utilized in a wide variety of research applications such as binding site prediction. In this study, a new combination of attention blocks in the 3D U-Net model based on semantic segmentation methods is used to improve localization of pocket prediction. The attention blocks are tuned to find which point and channel of features should be emphasized along spatial and channel axes. Our model's performance is evaluated through extensive experiments on several datasets from different sources, and the results are compared to the most recent deep learning-based models. The results indicate the proposed attention model (Att-UNet) can predict binding sites accurately, i.e. the overlap of the predicted pocket using the proposed method with the true binding site shows statistically significant improvement when compared to other state-of-the-art models. The attention blocks may help the model focus on the target structure by suppressing features in irrelevant regions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.