Abstract

Acoustic resolution photoacoustic micros- copy (AR-PAM) can achieve deeper imaging depth in biological tissue, with the sacrifice of imaging resolution compared with optical resolution photoacoustic microscopy (OR-PAM). Here we aim to enhance the AR-PAM image quality towards OR-PAM image, which specifically includes the enhancement of imaging resolution, restoration of micro-vasculatures, and reduction of artifacts. To address this issue, a network (MultiResU-Net) is first trained as generative model with simulated AR-OR image pairs, which are synthesized with physical transducer model. Moderate enhancement results can already be obtained when applying this model to in vivo AR imaging data. Nevertheless, the perceptual quality is unsatisfactory due to domain shift. Further, domain transfer learning technique under generative adversarial network (GAN) framework is proposed to drive the enhanced image's manifold towards that of real OR image. In this way, perceptually convincing AR to OR enhancement result is obtained, which can also be supported by quantitative analysis. Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values are significantly increased from 14.74 dB to 19.01 dB and from 0.1974 to 0.2937, respectively, validating the improvement of reconstruction correctness and overall perceptual quality. The proposed algorithm has also been validated across different imaging depths with experiments conducted in both shallow and deep tissue. The above AR to OR domain transfer learning with GAN (AODTL-GAN) framework has enabled the enhancement target with limited amount of matched in vivo AR-OR imaging data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.