Abstract

We study the spin photogalvanic effect in two-dimensional electron system with structure inversion asymmetry by means of the solution of semiconductor optical Bloch equations. It is shown that a linearly polarized light may inject a pure spin current in spin-splitting conduction bands due to Rashba spin-orbit coupling, while a circularly polarized light may inject spin-dependent photocurrent. We establish an explicit relation between the photocurrent by oblique incidence of a circularly polarized light and the pure spin current by normal incidence of a linearly polarized light such that we can deduce the amplitude of spin current from the measured spin photocurrent experimentally. This method may provide a source of spin current to study spin transport in semiconductors quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.