Abstract
Despite compelling arguments that significant discoveries of physics beyond the standard model are likely to be made at the Large Hadron Collider, it remains possible that this machine will make no such discoveries, or will make no discoveries directly relevant to the dark matter problem. In this article, we study the ability of astrophysical experiments to deduce the nature of dark matter in such a scenario. In most dark matter studies, the relic abundance and detection prospects are evaluated within the context of some specific particle physics model or models (e.g., supersymmetry). Here, assuming a single weakly interacting massive particle constitutes the Universe's dark matter, we attempt to develop a model-independent approach toward the phenomenology of such particles in the absence of any discoveries at the Large Hadron Collider. In particular, we consider generic fermionic or scalar dark matter particles with a variety of interaction forms, and calculate the corresponding constraints from and sensitivity of direct and indirect detection experiments. The results may provide some guidance in disentangling information from future direct and indirect detection experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.