Abstract

Obesity is a major risk factor for lung disease development. However, little is known about the impact of chronic high-fat and high-fructose (HFHF) diet-induced obesity on lung inflammation and subsequent pulmonary fibrosis. Herein we hypothesized that dedicator of cytokinesis 2 (DOCK2) promotes a proinflammatory phenotype of lung fibroblasts (LFs) to elicit lung injury and fibrosis in chronic HFHF diet-induced obesity. An HFHF diet for 20 weeks induced lung inflammation and profibrotic changes in wild-type C57BL/6 mice. CD68 and monocyte chemoattractant protein-1 (MCP-1) expression were notably increased in the lungs of wild-type mice fed an HFHF diet. An HFHF diet further increased lung DOCK2 expression that co-localized with fibroblast-specific protein 1, suggesting a role of DOCK2 in regulating proinflammatory phenotype of LFs. Importantly, DOCK2 knockout protected mice from lung inflammation and fibrosis induced by a HFHF diet. In primary human LFs, tumor necrosis factor-α (TNF-α) and IL-1β induced DOCK2 expression concurrent with MCP-1, IL-6, and matrix metallopeptidase 2. DOCK2 knockdown suppressed TNF-α-induced expression of these molecules and activation of phosphatidylinositol 3-kinase/AKT and NF-κB signaling pathways, suggesting a mechanism of DOCK2-mediated proinflammatory and profibrotic changes in human LFs. Taken together, these findings reveal a previously unrecognized role of DOCK2 in regulating proinflammatory phenotype of LFs, potentiation of lung inflammation, and pulmonary fibrosis in chronic HFHF diet-caused obesity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call