Abstract
Optode sensing membranes employing decyl methacrylate cross-linked with 1,6-hexanediol dimethacrylate as the polymer support were fabricated by a direct microspotting method on several surfaces. Photopolymerization was used to attach the microspots to the substrate. Using this method, diameters in the micrometer domain were obtained. Silanized glass, poly(methyl methacrylate) (PMMA), polycarbonate, and poly(dimethylsiloxane) were tested as possible substrates. Both polypropylene tips and the steel tips of drafting pens were used for spotting. It was determined that both silanized glass and PMMA gave working optodes, but the ones on PMMA did not fit the theoretical model. Diameters of 994 +/- 80 and 1279 +/- 85 microm were obtained on silanized glass and PMMA, respectively, using the polypropylene tips for spotting. Different size optodes were fabricated using 0.35- and 0.50-mm steel drafting pen tips. The 0.35-mm tips produced diameters of 895 +/- 26 and 688 +/- 54 microm on silanized glass and PMMA, respectively, and the 0.50-mm tips produced diameters of 1274 +/- 94 microm on silanized glass and 839 +/- 28 microm on PMMA. Thus, the microspot size can be controlled based on the hydrophobicity of the surface and the size of the tip used for spotting. Calibration plots of potassium optode microspots indicated that miniaturization does not alter response characteristics, such as selectivity, response time, and dynamic range, of the optodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.