Abstract
Because of its normal function in synaptic plasticity and pathologic involvement in age-related neurodegenerative diseases, the protein alpha-synuclein could play an important role in aging processes. Here we compared alpha-synuclein expression in the substantia nigra and other brain regions of young (2-month-old), middle-aged (10-month-old), and old (20-month-old) mice. Levels of nigral alpha-synuclein mRNA, as assessed by both in situ hybridization and qPCR, were high in young mice and progressively declined in middle-aged and old animals. This age-dependent mRNA loss was paralleled by a marked reduction of alpha-synuclein protein; immunoreactivity of midbrain sections stained with an anti-alpha-synuclein antibody was most robust in 2-month-old mice and weakest in 20-month-old animals. Lowering of nigral alpha-synuclein could not be explained by a loss of dopaminergic neurons and was relatively specific since no change in beta-synuclein mRNA and protein occurred with advancing age. Finally, age-related decreases in alpha-synuclein were widespread throughout the mouse brain, affecting other regions (e.g., hippocampus) besides the substantia nigra. The data suggest that loss of alpha-synuclein could contribute to or be a marker of synaptic dysfunction in the aging brain. They also emphasize important differences in alpha-synuclein expression between rodents and primates since earlier reports have shown a marked elevation of alpha-synuclein protein in the substantia nigra of older humans and non-human primates.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have