Abstract
The nicotine metabolite ratio (NMR), a stable measure of hepatic nicotine metabolism via the CYP2A6 pathway and total nicotine clearance, is a predictive biomarker of response to nicotine replacement therapy, with increased quit rates in slower metabolizers. Nicotine binds directly to nicotinic acetylcholine receptors (nAChRs) to exert its psychoactive effects. This study examined the relationship between NMR and nAChR (α4β2* subtype) availability using PET imaging of the radiotracer 2-(18)F-fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-(18)F-FA-85380, or 2-(18)F-FA). Twenty-four smokers-12 slow metabolizers (NMR < 0.26) and 12 normal metabolizers (NMR ≥ 0.26)-underwent 2-(18)F-FA-PET brain imaging after overnight nicotine abstinence (18 h before scanning), using a validated bolus-plus-infusion protocol. Availability of nAChRs was compared between NMR groups in a priori volumes of interest, with total distribution volume (VT/fP) being the measure of nAChR availability. Cravings to smoke were assessed before and after the scans. Thalamic nAChR α4β2* availability was significantly reduced in slow nicotine metabolizers (P = 0.04). Slow metabolizers exhibited greater reductions in cravings after scanning than normal metabolizers; however, craving was unrelated to nAChR availability. The rate of nicotine metabolism is associated with thalamic nAChR availability. Additional studies could examine whether altered nAChR availability underlies the differences in treatment response between slow and normal metabolizers of nicotine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.