Abstract

Several lysosomal enzymes were assayed in cultured human skin fibroblasts from patients with Duchenne's muscular dystrophy (DMD) and age- and sex-matched control patients (N). The activity of four glycosidases, cathepsin B(1), and total autoproteolysis at pH 4.0 were unchanged between the groups, but dipeptidyl aminopeptidase I (DAP-I, or cathepsin C) in the DMD cells was found to be only 30% as active as in the control cells (P < 0.003). This difference is not the result of a redistribution or loss of enzyme during homogenization because the difference occurs in all homogenate fractions. DAP-I activity existing in N and DMD fibroblasts behaves identically with respect to activation by chloride ion, activation by the sulfhydryl reducing agent dithiothreitol, changes in hydrogen ion concentration (pH), changes in substrate concentration (i.e., apparent K(m) values), and changes in temperature (i.e., apparent activation energies). Mixtures of N and DMD cell sonicates display an additivity in DAP-I activity. These results support the conclusion that the catalytic function of the DAP-I molecule is equivalent between N and DMD fibroblasts, and that the decrease in tissue-specific DAP-I activity probably results from the fact that fewer enzyme molecules are present in the DMD cells. These results are also an indication that these nonmuscle cells are expressing some of the phenotypic aspects of the genetic defect in DMD. Cultured human skin fibroblasts may therefore be a useful cellular model in DMD research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.