Abstract
BackgroundMajor depressive disorder (MDD) is mainly characterized by its core dysfunction in higher-order brain cortices involved in emotional and cognitive processes, whose neurobiological basis remains unclear. In this study, we applied a relatively new developed resting-state functional magnetic resonance imaging (rs-fMRI) method of intrinsic neural timescale (INT), which reflects how long neural information is stored in a local brain area and reflects an ability of information integration, to investigate the local intrinsic neural dynamics using univariate and multivariate analyses in adolescent depression. MethodBased on the rs-fMRI data of sixty-six treatment-naïve adolescents with MDD and fifty-two well-matched healthy controls (HCs), we calculated an INT by assessing the magnitude of autocorrelation of the resting-state brain activity, and then compared the difference of INT between the two groups. Correlation between abnormal INT and clinical features was performed. We also utilized multivariate pattern analysis to determine whether INT could differentiate MDD patients from HCs at the individual level. ResultCompared with HCs, patients with MDD showed shorter INT widely distributed in cortical and partial subcortical regions. Interestingly, the decreased INT in the left hippocampus was related to disease severity of MDD. Furthermore, INT can distinguish MDD patients from HCs with the most discriminative regions located in the dorsolateral prefrontal cortex, angular, middle occipital gyrus, and cerebellar posterior lobe. ConclusionOur research aids in advancing understanding the brain abnormalities of treatment-naïve adolescents with MDD from the perspective of the local neural dynamics, highlighting the significant role of INT in understanding neurophysiological mechanisms. This study shows that the altered intrinsic timescales of local neural signals widely distributed in higher-order brain cortices regions may be the neurodynamic basis of cognitive and emotional disturbances in MDD patients, and provides preliminary support for the suggestion that these could be used to aid the identification of MDD patients in clinical practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have