Abstract

Reactive oxygen and nitrogen species have been implicated in ischemia-reperfusion (I/R) injury. Metalloporphyrins (MP) are stable catalytic antioxidants that can scavenge superoxide, hydrogen peroxide, peroxynitrite and lipid peroxyl radicals. Studies were conducted with three manganese–porphyrin (MnP) complexes with varying superoxide dimutase (SOD) and catalase catalytic activity to determine if the MnP attenuates I/R injury in isolated perfused rat livers. The release of the hepatocellular enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) was maximal at 1 min reperfusion, decreased rapidly and increased gradually by 90 min. Manganese tetrakis-(N-ethyl-2 pyridyl) porphyrin (MnTE-2-PyP) decreased ALT, AST, LDH at 1–90 min reperfusion, while manganese tetrakis-(N-methyl-2 pyridyl) porphyrin (MnTM-2-PyP) and manganese tetrakis-(ethoxycarbonyl) porphyrin (MnTECP) decreased ALT and LDH from 5 to 90 min reperfusion. The release of thiobarbituric acid-reacting substances (TBARS) was diminished by MnTE-2-PyP and MnTM-2-PyP at 90 min. The extent of protein nitration (nitrotyrosine, NT) was decreased in all three MnPs treated livers. These results demonstrate that MnP complexes can attenuate hepatic I/R injury and may have therapeutic implications in disease states involving oxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call