Abstract

ObjectiveIn Alzheimer disease (AD) animal models, synaptic dysfunction has recently been linked to a disorder of high‐frequency neuronal activity. In patients, a clear relation between AD and oscillatory activity remains elusive. Here, we attempt to shed light on this relation by using a novel approach combining transcranial magnetic stimulation and electroencephalography (TMS‐EEG) to probe oscillatory activity in specific hubs of the frontoparietal network in a sample of 60 mild‐to‐moderate AD patients.MethodsSixty mild‐to‐moderate AD patients and 21 age‐matched healthy volunteers (HVs) underwent 3 TMS‐EEG sessions to assess cortical oscillations over the left dorsolateral prefrontal cortex, the precuneus, and the left posterior parietal cortex. To investigate the relations between oscillatory activity, cortical plasticity, and cognitive decline, AD patients underwent a TMS‐based neurophysiological characterization and a cognitive evaluation at baseline. The latter was repeated after 24 weeks to monitor clinical evolution.ResultsAD patients showed a significant reduction of frontal gamma activity as compared to age‐matched HVs. In addition, AD patients with a more prominent decrease of frontal gamma activity showed a stronger impairment of long‐term potentiation–like plasticity and a more pronounced cognitive decline at subsequent follow‐up evaluation at 24 weeks.InterpretationOur data provide novel evidence that frontal lobe gamma activity is dampened in AD patients. The current results point to the TMS‐EEG approach as a promising technique to measure individual frontal gamma activity in patients with AD. This index could represent a useful biomarker to predict disease progression and to evaluate response to novel pharmacological therapies. ANN NEUROL 2022;92:464–475

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call