Abstract

OBJECTIVEDiabetes is associated with hemodynamic instability during different situations involving acute circulatory stress in daily life. Young men with type 1 diabetes have been shown to have impaired circulatory response to hypovolemic stress. The effect of type 1 diabetes on cardiovascular response to hypovolemia in young women is unknown, however.RESEARCH DESIGN AND METHODSLower body negative pressure of 30 cm H2O was used to create rapid hypovolemic stress in 15 young women with type 1 diabetes (DW) and 16 healthy women (control subjects [C]). Compensatory mobilization of venous capacitance blood (capacitance response) and net fluid absorption from tissue to blood were measured with a volumetric technique. Overall cardiovascular responses and plasma norepinephrine levels were measured.RESULTSCapacitance response was reduced (DW, 0.67 ± 0.05; C, 0.92 ± 0.06) and developed slower in DW (P < 0.01). Capacitance response was further reduced with increasing levels of HbA1c. Fluid absorption was almost halved in DW (P < 0.01). The initial vasoconstrictor response was reduced and developed slower in DW (P < 0.05). Arterial vasoconstriction was further reduced in the presence of microvascular complications (P < 0.05).CONCLUSIONSDW present with decreased and slower mobilization of venous capacitance blood and decreased net fluid absorption from tissue to blood during hypovolemic circulatory stress. Collectively, this indicates that DW are prone to hemodynamic instability, especially in the presence of microvascular complications and poor glycemic control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.