Abstract

Clinical disorders of extracellular fluid (ECF) volume regulation are often associated with changes in plasma urea concentration. To investigate possible renal causes, we measured the relative abundance of the urea transporters UT-A1, UT-A2, and UT-A3 in renal medulla of rats with aldosterone-induced NaCl retention. ECF volume-expanded rats received aldosterone by osmotic minipump plus a diet containing a high level of NaCl. Control rats received the same infusion of aldosterone plus a virtually NaCl-free diet, which prevented ECF volume expansion. Preliminary measurements demonstrated transient positive Na and water balance, decreased serum urea concentration, and increased urea clearance, but no change in creatinine clearance. Immunoblotting of homogenates from inner medulla showed a marked decrease in the abundance of the collecting duct urea transporters UT-A1 and UT-A3. There were no differences in the abundance of UT-A2, aquaporin (AQP)-2, AQP-3, or AQP-4 in ECF volume-expanded rats vs. controls. Time course experiments demonstrated that changes in UT-A1 abundance paralleled the fall in serum urea concentration after the switch from a low-NaCl to a high-NaCl diet, whereas the fall in UT-A3 abundance was delayed. Candesartan administration markedly decreased the abundance of UT-A1 and UT-A3 in the renal inner medulla, which is consistent with a role for the angiotensin II type 1 receptor in urea transport regulation. The results support the view that ECF-related changes in serum urea concentration are mediated, at least in part, through altered urea transporter abundance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.