Abstract

IntroductionEmerging antibiotic resistance among bacterial pathogens has forced an urgent need for alternative non-antibiotic strategies development that could combat drug resistant-associated infections. Suppression of virulence of ESKAPE pathogens' by targeting multiple virulence traits provides a promising approach. ObjectivesHere we propose an iron-blocking antibacterial therapy based on a cationic heme-mimetic gallium porphyrin (GaCHP), which antibacterial efficacy could be further enhanced by photodynamic inactivation. MethodsWe used gallium heme mimetic porphyrin (GaCHP) excited with light to significantly reduce microbial viability and suppress both the expression and biological activity of several virulence traits of both Gram-positive and Gram-negative ESKAPE representatives, i.e., S. aureus and P. aeruginosa. Moreover, further improvement of the proposed strategy by combining it with routinely used antimicrobials to resensitize the microbes to antibiotics and provide enhanced bactericidal efficacy was investigated. ResultsThe proposed strategy led to substantial inactivation of critical priority pathogens and has been evidenced to suppress the expression and biological activity of multiple virulence factors in S. aureus and P. aeruginosa. Finally, the combination of GaCHP phototreatment and antibiotics resulted in promising strategy to overcome antibiotic resistance of the studied microbes and to enhance disinfection of drug resistant pathogens. ConclusionLastly, considering high safety aspects of the proposed treatment toward host cells, i.e., lack of mutagenicity, no dark toxicity and mild phototoxicity, we describe an efficient alternative that simultaneously suppresses the functionality of multiple virulence factors in ESKAPE pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call