Abstract
AbstractWe introduce a new class of continuous-time models of the stochastic volatility of asset prices. The models can simultaneously incorporate roughness and slowly decaying autocorrelations, including proper long memory, which are two stylized facts often found in volatility data. Our prime model is based on the so-called Brownian semistationary process and we derive a number of theoretical properties of this process, relevant to volatility modeling. Applying the models to realized volatility measures covering a vast panel of assets, we find evidence consistent with the hypothesis that time series of realized measures of volatility are both rough and very persistent. Lastly, we illustrate the utility of the models in an extensive forecasting study; we find that the models proposed in this article outperform a wide array of benchmarks considerably, indicating that it pays off to exploit both roughness and persistence in volatility forecasting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.