Abstract

When C/SiC composites subjected to high-power laser irradiation under hypersonic airflow environment, “avalanche” phenomenon was found, i.e., the ablation rate was significantly higher than that under static air environment. To reveal this phenomenon, parallel experiments of laser ablation under static air, short-time and long-time hypersonic airflow environments were carried out. Ablation models including oxidation, sublimation and erosion considering coupling effects of airflow and C/SiC composites were introduced, and a coupled fluid-thermal-ablation numerical simulation procedure was proposed and carried out. The relationship between ablation rates and aerodynamic pressure was discussed, and the contributions of different ablation mechanisms were quantitively evaluated. In hypersonic airflow environments, sublimation rate was increased due to the decreased local pressure, and erosion rate was accelerated as a result of increased pressure head at downstream area. The combined effect of augmented sublimation and accelerated erosion accounted for the main reason of “avalanche” phenomenon under hypersonic airflow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.