Abstract

There is growing evidence that the stability of perovskite solar cells (PSCs) is strongly dependent on the interface chemistry between the absorber films and adjacent charge‐transport layers, whereas the exact mechanistic pathways remain poorly understood. Herein, a straightforward approach is presented for decoupling the degradation effects induced by the top fullerene‐based electron transport layer (ETL) and various bottom hole‐transport layer (HTL) materials assembled in p‐i‐n PSCs. It is shown that chemical interaction of MAPbI3 absorber with ETL comprised of the fullerene derivative most aggressively affects the device operational stability. However, washing away the degraded fullerene derivative and depositing fresh ETL leads to restoration of the initial photovoltaic performance when bottom perovskite/HTL interface is not degraded. Following this approach, it is possible to compare the photostability of stacks with various HTLs. It is shown that poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and NiOx induce significant degradation of the adjacent perovskite layer under light exposure, whereas poly[bis(4‐phenyl)(2,4,6‐trimethylphenyl)amine] (PTAA) provides the most stable perovskite/HTL interface. A time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) analysis allows identification of chemical origins of the interactions between MAPbI3 and HTLs. The proposed research methodology and the revealed degradation pathways should facilitate the development of efficient and stable PSCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.