Abstract

As the largest ecological carbon sequestration systems on the Earth, forests play a significant role in reducing carbon dioxide, and countries around the world are actively expanding their forest areas. However, China’s carbon emissions and forest area have shown an upward trend, which has seriously hindered the implementation of forestry carbon sequestration projects. This paper analyzed the temporal variation, spatial distribution, and deviation degree of the forest area and carbon emissions in China from 2004 to 2020 by using a decoupling model and a coordination model. Firstly, according to the decoupling model, the national carbon emissions and forest area are negatively decoupled. At the provincial level, Beijing, Shanghai, Jiangsu, Guizhou, Yunnan, and Gansu have weak decoupling. Expansive link areas include Shanxi, Henan, Hubei, Ningxia, and Xinjiang. The other 19 provinces show expansive negative decoupling. Secondly, according to the coordination model, national carbon emissions are coordinated to the forest area. Zhejiang, Fujian, Jiangxi, and Guangdong are basically coordinated provinces. More coordinated provinces include Ningxia. The other 25 provinces are coordinated provinces. Finally, according to the comprehensive measurement model, Inner Mongolia, Qinghai, Shaanxi, Hainan, Jilin, Anhui, Liaoning, and Heilongjiang are high-quality expansive negative decoupling provinces. Chongqing, Hunan, Tianjin, Shandong, Hebei, and Guangxi are moderate to strong expansive negative decoupling provinces. This study not only provides a new perspective for analyzing forest carbon sinks, but also provides theoretical guidance for enhancing the natural carbon sink capacity, helping to achieve global carbon peak and carbon neutrality goals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call