Abstract
Abstract Pyroxenite veins and dikes are commonly observed in the mantle section of ophiolites. Because of their mantle occurrence, these pyroxenites are free from crustal contamination and offer a unique opportunity for studying mantle compositions and melt–rock interaction processes. We conducted an integrated petrological and geochemical study of a suite of composite orthopyroxenite, websterite, and pyroxene-bearing dunite veins from the Xiugugabu ophiolite located on the western segment of Yarlung–Zangbo Suture Zone. The dunite is separated from the host peridotite by a layer of pyroxenite, forming a composite vein system. Systematic variations in major, minor, and trace element compositions in minerals across the composite veins are observed. Two generations of orthopyroxenes in the pyroxenites are characterized by high Mg#, low TiO2 concentrations, and depleted patterns of incompatible trace elements. Clinopyroxenes in the pyroxenites are characterized by high Mg#, low contents of TiO2 and Na2O, spooned shaped REE patterns, and a negative Zr anomaly. Through major and trace element modeling, we showed that both orthopyroxene and clinopyroxene were in equilibrium with melts with different compositions. This hypothesis is further confirmed by distinct initial Nd and Hf isotope ratios in the two pyroxenes. A model for the formation of composite pyroxenite veins is developed, whereby hydrous and silica-rich melts percolate along the margins of a dunite channel. The orthopyroxenite was formed by the reaction between a hydrous, silica-rich melt and the surrounding peridotite. The websterite is formed by reactive crystallization of a hybrid melt produced by mixing silica-rich melt and the melt formed by remelting of previously depleted peridotite in the deeper part of the mantle column. The extremely enriched Nd–Hf isotope compositions of the pyroxenite veins (εNd = −20.3 to +11.5 and εHf = −13.2 to +25.3, 125 million years ago) can be explained by the addition of ancient, recycled sediments to the mantle source in a supra-subduction setting. Based on the low-Cr# spinel in the Xiugugabu dunites (Cr# = 19–50) and the depleted nature of the parental melt of the Xiugugabu pyroxenites, we deduced that the formation of pyroxenites postdate the formation of the Xiugugabu ophiolite at ~125–130 Ma. Collectively, results from this study have provided support to the hypothesis that the Xiugugabu ophiolite experience a two-stage evolution, i.e., firstly formed in a mid-ocean ridge setting and subsequently modified in a supra subduction zone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have