Abstract

ABSTRACT This paper presents a computationally efficient solution for constraint management of multi-input and multi-output (MIMO) systems. The solution, referred to as the Decoupled Reference Governor (DRG), maintains the highly-attractive computational features of Scalar Reference Governors (SRG) while having performance comparable to Vector Reference Governors (VRG). DRG is based on decoupling the input–output dynamics of the system, followed by the deployment of a bank of SRGs for each decoupled channel. We present two formulations of DRG: DRG-tf, which is based on system decoupling using transfer functions, and DRG-ss, which is built on state feedback decoupling. A detailed set-theoretic analysis of DRG, which highlights its main characteristics, is presented. We also show a quantitative comparison between DRG and the VRG to illustrate the computational advantages of DRG. The robustness of this approach to disturbances and uncertainties is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.