Abstract

In this paper we present decoupled deferred shading: a rendering technique based on a new data structure called compact geometry buffer, which stores shading samples independently from the visibility. This enables caching and efficient reuse of shading computation, e.g. for stochastic rasterization techniques. In contrast to previous methods, our decoupled shading can be efficiently implemented on current graphics hardware. We describe two variants which differ in the way the shading samples are cached: the first maintains a single cache for the entire image in global memory, while the second pursues a tile-based approach leveraging local memory of the GPU's multiprocessors. We demonstrate the application of decoupled deferred shading to speed up the rendering in applications with stochastic supersampling, depth of field, and motion blur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.