Abstract
Monitoring the high aspect ratio etch profiles in state-of-the-art three-dimensional NAND memory fabrication processes has pushed metrology technologies to new limits. Here, we discuss how a mid-infrared ellipsometric measurement can yield angstrom level discrimination in critical dimension changes of memory channel hole (CH) profiles across such a memory chip. Using finite-difference time-domain and rigorous coupled-wave analysis simulations, we demonstrate how dispersion mitigated mid-infrared beam penetration into these memory structures permits parameter decorrelation and the measurement of the full CH profile.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Micro/Nanopatterning, Materials, and Metrology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.