Abstract
The fast simulator RADICAL and the Actinic Inspection Tool (AIT) are used in advance of availability of high volume manufacturing quality exposure tools, resists, and masks to assess the expected defect printability levels in production conditions. AIT images are analyzed to qualitatively demonstrate general trends in defect printability: defects smaller than 0.5nm tall on the multilayer surface can cause an unacceptable critical dimension (CD) change, CD change increases for taller defects, and defect printability varies asymmetrically through focus. RADICAL is used to derive quantitative limits for defect size and demonstrate the effects of focus and illumination for 22nm and 16nm dense lines. For 22nm dense lines at best focus a 0.8nm tall defect causes a 10% CD change. For 16nm lines a 0.4nm tall defect causes a 10% CD change. The CD is shown to be more sensitive to buried defects out of focus, but less sensitive to defects in focus if annular or dipole illumination is used.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.