Abstract
Aging impairs the IGF-I signaling of bone marrow mesenchymal stem cells (bmMSCs), but the mechanism is unclear. Here, we found that the ability to auto-phosphorylate IGF-I receptor (IGF-IR) in response to IGF-I was decreased in the bmMSCs of aged donors. Conversely, data showed that decorin (DCN) expression was prominently increased in aged bmMSCs, and that under IGF-I treatment, DCN knockdown in serum-starved aged bmMSCs potentiated their mitogenic activity and IGF-IR auto-phosphorylation, whereas DCN overexpression in serum-starved adult bmMSCs decreased both activities. Co-immunoprecipitation assays suggested that IGF-I and DCN bound to IGF-IR in a competitive manner. Online MethPrimer predicted 4 CpG islands (CGIs) in the introns of DCN gene. RT-qPCR and bisulfite sequencing showed that dimethyloxalylglycine, an inhibitor of DNA demethylation, increased DCN mRNA expression and CGI-I methylation in adult bmMSCs, whereas 5-aza-2’-deoxycytidine, a DNA methylation inhibitor, decreased DCN mRNA expression and CGI-I methylation in aged bmMSCs, and ultimately enhanced the proliferation of serum-starved aged bmMSCs under IGF-I stimulation. Thus, IGF-IR could be the prime target of aging in down-regulating the IGF-I signaling of bmMSCs, where DCN could be a critical mediator.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have