Abstract
Silicon nanowires (Si NWs), produced by the chemical etching technique, were decorated with silver nanoparticles (NPs) produced at room temperature by the pulsed laser deposition (PLD) technique. Silver NPs were obtained by means of nanosecond pulsed laser ablation of a target in the presence of a controlled Ar atmosphere. Two different laser pulse numbers and Si NWs having different lengths were used to change the NP number density on the Si NW surface. The resulting Ag NP morphologies were studied by scanning electron microscopy imaging. The results show that this industrially compatible technological approach allows the coverage of the Si NW walls with Ag NPs with a strong control of the NP size distribution and spatial arrangement. The obtained Ag NP decorated Si NWs are free from chemicals contamination and there is no need of post deposition high temperature processes. The optical properties of Si NW arrays were investigated by reflectance spectroscopy that showed the presence of a plasmon related absorption peak, whose position and width is dependent on the Ag NP surface morphology. Coupling the huge surface-to-volume ratio of Si NW arrays with the plasmonic properties of silver nanoparticles resulted in a 3D structure suitable for very sensitive surface enhanced Raman scattering (SERS) applications, as demonstrated by the detection of Rhodamine 6G in aqueous solution at a concentration level of 10−8 M.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have