Abstract

MXene sheets with the unique electrical and optical properties show the excellent potential for surface-enhanced Raman spectroscopy (SERS) applications. In this study, we chose Ti3C2Tx, a type of MXene, to decorate silver nanoparticles (Ag NPs) on the ultrathin two-dimensional (2D) MXene sheets. The designed Ag-MXene substrates with SERS activity showed high sensitivity, high stability, and reproducibility. The SERS signal was enhanced by the synergistic contribution of both charge-transfer (CT) and surface plasmon resonance (SPR) involving the Ag NPs and the MXene sheets. Due to the strong interaction between the probe molecules and Ag NPs which provided the nanoscale gap, the substrate exhibited remarkable SERS performance. A novel experimental strategy was developed to facilitate the controlled synthesis of noble metal NPs and MXene sheets and provide insights for further improving the practical applications of these materials in SERS detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call