Abstract

Refining is a serious challenge in the production of recombinant proteins, and this study proposes a new and easy strategy for the synthesis of magnetic affinity nanoparticles. First, the nanoparticles attached to polyvinyl alcohol brushes were synthesized, and then the hydroxyl groups of this polymer were converted to chelate groups. The nanoparticles were examined by (SEM) scanning electron microscopy, (TEM) transmission electron microscopy, (DLS) dynamic light scattering, (FT-IR) Fourier transform infrared, (XRD) X-ray powder diffraction, (VSM) vibrating sample magnetometry, and (TGA) thermal gravimetric analysis. The results confirm that uniform and spherical magnetic polymer nanoparticles with high magnetization and superparamagnetic properties were successfully synthesized. The S100A9 protein, a His-tagged recombinant protein, was expressed and purified using the synthesized nanoparticles. According to the (SDS-PAGE) sulfate-polyacrylamide gel electrophoresis results, there is a high degree of resolution in protein separation. The synthesized nanoparticles have a high protein binding capacity of about 208 mg of protein per gram of nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.