Abstract

The chromatic index problem—finding the minimum number of colours required for colouring the edges of a graph—is still unsolved for indifference graphs, whose vertices can be linearly ordered so that the vertices contained in the same maximal clique are consecutive in this order. We present new positive evidence for the conjecture: every non neighbourhood-overfull indifference graph can be edge coloured with maximum degree colours. Two adjacent vertices are twins if they belong to the same maximal cliques. A graph is reduced if it contains no pair of twin vertices. A graph is overfull if the total number of edges is greater than the product of the maximum degree by ⌊ n/2⌋, where n is the number of vertices. We give a structural characterization for neighbourhood-overfull indifference graphs proving that a reduced indifference graph cannot be neighbourhood-overfull. We show that the chromatic index for all reduced indifference graphs is the maximum degree. We present two decomposition methods for edge colouring reduced indifference graphs with maximum degree colours.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.