Abstract

Simulation and performance evaluation of concurrent Java program execution have been difficult due to the lack of proper model and tools. Previous modeling and simulation approaches cannot simultaneously achieve three tasks: (1) support the direct simulation of unmodified multi-thread Java programs; (2) guarantee deterministic simulation results; and (3) offer low-overhead and scalable simulation. This paper first presents a novel simulation model based on the Java memory model. The model axiomatically defines action ordering, relationships, and constraints to ensure the well-formedness and determinism of a simulated execution. Then, based on the model, we implement the DecompositionJ simulation framework (deterministic, concurrent multi-processsing simulation for Java programs) which enables the direct-execution simulation of target program by using compiler-based source-to-source transformation and a purposely designed runtime library. The framework is compatible with any JVM that complies with the Java specifications, and does not require manual modifications on the target program code. The performance of the framework has been evaluated with the Grande Java concurrency benchmark suite, results have shown a geometric mean of 98.9% overhead over all cases, which significantly outperforms full-system simulation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call