Abstract

AbstractFor a loopless multigraph G, the fractional arboricity Arb(G) is the maximum of over all subgraphs H with at least two vertices. Generalizing the Nash‐Williams Arboricity Theorem, the Nine Dragon Tree Conjecture asserts that if , then G decomposes into forests with one having maximum degree at most d. The conjecture was previously proved for ; we prove it for and when and . For , we can further restrict one forest to have at most two edges in each component.For general , we prove weaker conclusions. If , then implies that G decomposes into k forests plus a multigraph (not necessarily a forest) with maximum degree at most d. If , then implies that G decomposes into forests, one having maximum degree at most d. Our results generalize earlier results about decomposition of sparse planar graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.