Abstract
Decomposition of aquatic macrophytes can considerably influence carbon cycling and energy flow in shallow freshwater aquatic ecosystems. The Atchafalaya River Basin (ARB) is a large floodplain river in southern Louisiana that experiences a seasonal floodpulse and is spatially composed of a mosaic of turbid riverine and stagnant backwater areas. During two seasons, winter and fall of 1995, we examined decomposition of four common aquatic macrophytes in the ARB: water hyacinth (Eichhornia crassipes), arrowhead (Sagittaria platyphylla), coontail (Ceratophyllum demersum) and hydrilla (Hydrilla verticillata). To determine decay rates, we used litter bags of two mesh sizes (5 mm and 0.25 mm) and analyzed data with a single exponential decay model. Analysis of decay rates established several trends for aquatic macrophyte decomposition in the ARB. First, macrophytes decayed faster in fall than winter due to the effect of increased temperature. Second, macroinvertebrates were the primary decomposers of macrophytes in riverine sites and microbes were the primary decomposers in backwater areas. These trends may have been related to decomposer-habitat interactions, with well-oxygenated riverine sites more hospitable to invertebrates and backwater areas more favorable to microbes because of high organic inputs and reduced flow. Decay rates for macrophytes, ranked from slowest to fastest, were E. crassipes<S. platyphylla<C. demersum<H. verticillata. Slower decomposition of E. crassipes was probably a result of microbial inhibition by the waxy-cutin outer layer and low nutritional value. The accelerated decomposition of C. demersum and H. verticillata was most likely a function of the large surface area of the highly dissected leaves. Macroinvertebrate numbers were twice as high in riverine sites compared to backwater sites. In the winter, amphipods Gammarus spp. and Hyallela azteca composed a large percentage of the total density on detritus. In the fall, Caenis sp. was prevalent in the backwater habitat and dipterans were abundant in the riverine site. We investigated the microbial component involved in the decomposition of E. crassipes and S. platyphylla and found that the highest microbial respiration rates occurred early in the winter at the backwater site. Bacterial density in the winter on E. crassipes and S. platyphylla averaged 1.4×106 cm-2 after two days and decreased to 2.0×105 cm-2 after 28 d. Our results emphasized the importance of the microbial community in the decomposition of macrophytes in the ARB, especially in backwater habitats and in the early stages of decay.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have