Abstract

Metastable solid solutions of cubic (c)-(TixCryAlz)N coatings were grown by a reactive arc evaporation technique to investigate the phase transformations and mechanisms that yield enhanced high-temperature mechanical properties. Metal composition ranges of y < 17 at. % and 45 < z < 62 at. % were studied and compared with the parent TiAlN material system. The coatings exhibited age hardening up to 1000 °C, higher than the temperature observed for TiAlN. In addition, the coatings showed a less pronounced decrease in hardness when hexagonal (h)-AlN was formed compared to TiAlN. The improved thermal stability is attributed to lowered coherency stress and lowered enthalpy of mixing due to the addition of Cr, which results in improved functionality in the temperature range of 850–1000 °C. Upon annealing up to 1400 °C, the coatings decompose into c-TiN, bcc-Cr, and h-AlN. The decomposition takes place via several intermediate phases: c-CrAlN, c-TiCrN, and hexagonal (β)-Cr2N. The evolution in microstructure observed across different stages of spinodal decomposition and phase transformation can be correlated to the thermal response and mechanical hardness of the coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.