Abstract
In the process of rapid development and urbanization in Beijing, identifying the potential factors of carbon emissions in the transportation sector is an important prerequisite to controlling carbon emissions. Based on the expanded Kaya identity, we built a multivariate generalized Fisher index (GFI) decomposition model to measure the influence of the energy structure, energy intensity, output value of per unit traffic turnover, transportation intensity, economic growth and population size on carbon emissions from 1995 to 2012 in the transportation sector of Beijing. Compared to most methods used in previous studies, the GFI model possesses the advantage of eliminating decomposition residuals, which enables it to display better decomposition characteristics (Ang et al., 2004). The results show: (i) The primary positive drivers of carbon emissions in the transportation sector include the economic growth, energy intensity and population size. The cumulative contribution of economic growth to transportation carbon emissions reaches 334.5%. (ii) The negative drivers are the transportation intensity and energy structure, while the transportation intensity is the main factor that restrains transportation carbon emissions. The energy structure displays a certain inhibition effect, but its inhibition is not obvious. (iii) The contribution rate of the output value of per unit traffic turnover on transportation carbon emissions appears as a flat “M”. To suppress the growth of carbon emissions in transportation further, the government of Beijing should take the measures of promoting the development of new energy vehicles, limiting private vehicles’ increase and promoting public transportation, evacuating non-core functions of Beijing and continuingly controlling population size.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part D: Transport and Environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.