Abstract

Cloud changes and their attribution under global warming still remains a challenge in climatic change studies, especially in decomposing the fast and slow cloud responses to anthropogenic forcing. In this study, the responses of global cloud cover to the quadrupled CO2 forcing are investigated quantitatively by decomposing the total response into fast and slow ones using the multi-model data from the Coupled Model Intercomparison Project Phase 6 (CMIP6). During the quasi-equilibrium period after the quadrupling of CO2 forcing, the global mean changes of simulated total cloud cover (TCC) in the total, fast, and slow responses are −2.42%, −0.64%, and −1.78%, respectively. Overall, the slow response dominates the total response in most regions over the globe with similar spatial patterns. TCC decreases at middle and low latitudes but increases at high latitudes in the total and slow responses. Whereas, it mainly decreases in the middle and low latitudes of the southern hemisphere as well as in the middle and high latitudes of the northern hemisphere in the fast response. A change in vertical motion is the major contributor to the cloud cover change at middle and low latitudes, while the decrease in upper atmospheric temperature leads to an increase in high cloud cover at high latitudes. In addition, the anomaly in water vapor convergence/diffusion also contributes to the cloud cover increase/decrease at low latitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call