Abstract
We adopt the quantum field theoretical method to calculate the amplitude and event rate for a neutrino oscillation experiment, considering neutrino production, propagation and detection as a single process. This method allows to take into account decoherence effects in the transition amplitude induced by the quantum mechanical uncertainties of all particles involved in the process. We extend the method to include coherence loss due to interactions with the environment, similar to collisional line broadening. In addition to generic decoherence induced at the amplitude level, the formalism allows to include, in a straightforward way, additional damping effects related to phase-space integrals over momenta of unobserved particles as well as other classical averaging effects. We apply this method to neutrino oscillation searches at reactor and Gallium experiments and confirm that quantum decoherence is many orders of magnitudes smaller than classical averaging effects and therefore unobservable. The method used here can be applied with minimal modifications also to other types of oscillation experiments, e.g., accelerator based beam experiments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have