Abstract

We study the decoherence and relaxation of a single elementary electronic excitation propagating in a one-dimensional chiral conductor. Using two-particle interferences in the electronic analog of the Hong-Ou-Mandel experiment, we analyze quantitatively the decoherence scenario of a single electron propagating along a quantum Hall edge channel at filling factor 2. The decoherence results from the emergence of collective neutral excitations induced by Coulomb interaction and leading, in one dimension, to the destruction of the elementary quasiparticle. This study establishes the relevance of electron quantum optics setups to provide stringent tests of strong interaction effects in one-dimensional conductors described by Luttinger liquids paradigm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.