Abstract

Although interesting per se, decoherence and relaxation of single-electron excitations induced by strong effective screened Coulomb interactions in Quantum Hall edge channels are an important challenge for the applications of electron quantum optics in quantum information and quantum sensing. In this paper, we study intrinsic single-electron decoherence within an ideal single-electron channel with long-range effective Coulomb interactions to determine the influence of the material and sample properties. We find that weak-coupling materials characterized by a high velocity of hot-electron excitations may offer interesting perspectives for limiting intrinsic decoherence due to electron/electron interactions. We discuss quantitively how extrinsic decoherence due to the coupling with the channel's electromagnetic environment can be efficiently inhibited in specially designed samples at $\nu=2$ with one closed edge channel and we propose a realistic geometry for testing decoherence control in an Hong Ou Mandel experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.