Abstract
T-cell intracellular antigen 1 (TIA1) is an RNA-binding protein (RBP) that plays a multifunctional role in RNA metabolism. TIA1 has three RNA-Recognition Motifs (RRMs) and a prion-like carboxyl C-terminal domain (LCD) with intrinsically disordered regions (IDR) implicated in the dynamics (i.e., formation, assembly, and disassembly) of transient RNA-protein aggregates known as stress granules (SGs). A protein related to TIA1 is its paralog TIA1-related/like protein (TIAR/TIAL1), whose amino acid sequence, structural organisation, and molecular and cellular functions are highly conserved with TIA1. Both proteins are the main components of SGs, which are non-membranous RNA-protein condensates formed under stress to promote cell survival. Welander distal myopathy (WDM) is a late-onset muscular dystrophy that has been linked to a single-nucleotide substitution (c.1362G>A; p.E384K) in the gene encoding the TIA1 protein, which impacts TIA1-dependent SGs dynamics. Herein, we have analysed cellular and molecular aspects by targeting mutagenesis to position 384 to understand its molecular grammar in an amino acid/proteinogenic-dependent or -independent manner under oxidative stress. The observations suggest differential, even opposing, behaviours between TIA1 and TIAR in the presence of specific amino acids with negative and positive charges, and also uncharged acids, at equivalent positions of TIA1 and TIAR, respectively. Collectively, these findings illustrate a characteristic molecular grammar of TIAR- and TIA1-dependent SGs under oxidative conditions, suggesting a gain of versatility between two structurally and functionally highly conserved/related proteins.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have